On Possible Secure Cross-Border M-Government Model

Prof. Dr Milan Marković
Banca Intesa ad Beograd
milan.markovic@bancaintesabeograd.com

Goran Đorđević
Institute for Manufacturing banknotes and coins NBS,
djg_goran@mail.com

MeTTTeG 2011, June 30 – July 1, 2011, Camerino, Italy
M-Government – Outline

- Introduction
- Security in Mobile Communication
- Possible M-Government architecture
- Possible m-Residence certificate service scenario
- JAVA Mobile Client Application
- Cross-border m-Residence certificate service scenario
- Conclusion
Introduction

- In this presentation, we describe a possible model for secure cross-border M-Government system based on secure JAVA mobile application and a SOA-Based M-Government platform.
- The model additionally consists of external entities, such as: PKI, XKMS, STS, UDDI and Time Stamping servers.
Introduction

- One example of possible mobile government online services is particularly emphasized: sending m-residence certificate request and obtaining the m-residence electronic document (m-residence certificate) as a governmental organization’s (e.g. municipality) response in the cross-border case.

- In this paper, the cross-border means either scenarios between two municipalities in the same country or between governmental organizations in different countries.
Security in Mobile Communication

- User authentication
- User identity
- Federation Identity
- User authorization to the proposed platform
- Authenticity, Integrity and Non-repudiation of transactions
- Confidentiality
- Electronic signature verification on the user’s side
- Long-term validity of transactions
Possible M-Government architecture

- STS Server
- PKI
- TSA
- UDDI
- e/m Government Platform
- Citizen / Company

SWEB e/m Government Framework
Local m-Residence Certificate Scenario

1: Citizen sends request() to SWEB Platform.
2: SWEB Platform sends notification() to Citizen.
3: SWEB Platform sends request() to Legacy System.
4: Legacy System approves request() and sends mRCertificate() to Civil Servant.
5: Legacy System sends request() to Civil Servant.
6: Legacy System creates mRCertificate().
7: Legacy System sends mRCertificate() to Civil Servant.
8: Civil Servant approves mRCertificate().
9: Civil Servant sends mRCertificate() to SWEB Platform.
10: SWEB Platform sends notification() to Citizen.
11: Citizen retrieves mRCertificate().
12: Citizen sends mRCertificate() to SWEB Platform.
Secure JAVA Mobile Application Architecture
Secure JAVA Mobile Application

- JAVA Mobile application comprises of following functionalities:
 - Graphical User Interface (GUI) for presenting business functionalities to the end user
 - Business (core) functionalities of the application – m-government functionality, e.g. m-residence certificate
 - Security functionalities
 - Communication
Secure JAVA Mobile Application

- The Security object of the considered JAVA mobile application is responsible for overall application-level security functionalities
- It consists of the following modules:
 - Authentication module to the JAVA application
 - XKMS module
 - SAML module
 - XML security module
 - WS-Security module
 - Time-Stamping module
Secure JAVA Mobile Application

- The solution is based on PKI digital certificates for endusers/citizens, digital signature and encryption and is also based on cross-certified PKI systems of platform (SWEB)-enabled municipalities in different countries.
Secure JAVA Mobile Application

- This JAVA application works with a corresponding SOAP-based Web Service Module on the M-Government side which is a part of the SWEB JAVA platform that needs to be installed in the SWEB-enabled municipality.

- The Secure JAVA application, as well as the SWEB platform itself, supports a cross-border M-document requests which means that a citizen in one municipality in one country could securely requests M-document from the original municipality in another country.
Security aspects

- Security aspects in communication between the client and M-Government platform:
 - XML signature
 - Time Stamping
 - SAML token
 - WS-Security (WS-Encryption and/or WS-Signature)
Security aspects

- User authentication and authorization
 - Username/password to access the client application and asymmetric private key
 - User’s digital certificate to be authenticated by the STS server
 - SAML token issued to the user for authentication to the particular service
 - User profile (digital certificate) for user authorization to the platform
Security aspects

- Secure communication between two SWEB enabled M-Government platforms
 - Digital certificate for platform’s authentication to the STS server
 - SAML token for platform’s authentication to the service
 - User’s profile (digital certificate) for platform’s authorization
Security aspects

- Identities of users
 - Digital certificates
 - PKI hierarchy
 - XKMS for certificate locating (LocateRequest) and validating (ValidateRequest)
SWEB Architecture Overview
SWEB Architecture Overview

IntegrationTier provides interface to the Legacy System

Mobile Client Tier holds components necessary for the user to access the system from mobile devices.

EnterpriseTier II orchestrates components in business services.

External Services:
- Secure Token Services (STS) server for issuing SAML (Security Assertion Markup Language) tokens
- TimeStamping server (TSA) for time stamping official documents
- PKI services for certificate issue and validation
- UDDI repository to store URLs of SWEB components

InteractionTier provides the interface to the other tiers and holds components providing communication with the platform and implementing security features.
The Residence Certification Service Cross-Border request scenario
The Residence Certification Service Cross-Border request scenario
Main contributions

- Proposal of a possible secure cross-border m-government model based on JAVA mobile/desktop application and SOA-based m-government platform.
- Usage of secure JAVA mobile application in which all modern security techniques are implemented (XML-security, WS-Security, SAML, Time Stamping, PKI, XKMS) which are used in optimum way in order to cope with majority of security issues of the mobile Web Service communication.
- Usage of SOA-based request-response m-government platform (Web Services) which is far more suitable in the mobile communication systems instead of session-based Web application platform.
- Usage of XKMS service which is more suitable for mobile PKI system since it outsources complex operations such as PKI validation services to the external entity – the XKMS server, compared to usages of other techniques [4].
Future research directions

- Full implementation of JAVA mobile application into the JAVA CDC 1.1 enabled mobile devices
- Development of similar application for other mobile platforms (iPhone, BlackBerry, Android, Windows Mobile)
- Full implementation of advanced electronic signature formats (e.g. XAdES, PAdES)
- Integration of PKI SIM technology in the Mobile Client application
- Using SWEB-like system for other PKI based e/m-governmental services (strong user authentication to other e-gov web portals, signing documents prepared through some other communication channels, qualified signatures, etc.)
Thank you for your attention

Thank You